Differential Polynomials Generated by Second Order Linear Differential Equations
نویسندگان
چکیده
منابع مشابه
On the stability of linear differential equations of second order
The aim of this paper is to investigate the Hyers-Ulam stability of the linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$ $fin C[a,b]$ and $-infty
متن کاملApproximately $n$-order linear differential equations
We prove the generalized Hyers--Ulam stability of $n$-th order linear differential equation of the form $$y^{(n)}+p_{1}(x)y^{(n-1)}+ cdots+p_{n-1}(x)y^{prime}+p_{n}(x)y=f(x),$$ with condition that there exists a non--zero solution of corresponding homogeneous equation. Our main results extend and improve the corresponding results obtained by many authors.
متن کاملComplex Oscillation of Differential Polynomials Generated by Meromorphic Solutions of Linear Differential Equations
We investigate the complex oscillation of some differential polynomials generated by solutions of the differential equation f ′′ + A1(z)f ′ + A0(z)f = 0, where A1(z), A0(z) are meromorphic functions having the same finite iterated p-order.
متن کاملRelation between Small Functions with Differential Polynomials Generated by Solutions of Linear Differential Equations
and Applied Analysis 3 Theorem C. Let Aj z /≡ 0 j 0, 1 be entire functions with σ Aj < 1, and let a, b be complex constants such that ab / 0 and arga/ arg b or a cb 0 < c < 1 . If ψ z /≡ 0 is an entire function with finite order, then every solution f /≡ 0 of 1.2 satisfies λ f − ψ λ f ′ − ψ λ f ′′ − ψ ∞. Furthermore, let d0 z , d1 z ,and d2 z be polynomials that are not all equal to zero, and l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Analysis
سال: 2008
ISSN: 1425-6908,1869-6082
DOI: 10.1515/jaa.2008.259